
2022 Rocky Mountain Regional
Solutions

The Judges

Feb 25, 2023

2022 Rocky Mountain Regional Solutions 1 / 22

Blueberry Waffle

Problem
A waffle maker rotates 180 degrees every r seconds. A blueberry
waffle is inserted with the blueberries pointing up. After f seconds,
the waffle maker stops and rotates strictly fewer than 90 degrees back
to horizontal. Are the blueberries pointing up or down?

Solution
The waffle maker makes a full rotation every 2r seconds. Therefore,
we can take f modulo 2r . If f is less than r

2 or greater than 3r
2 , then

the blueberries are pointing up. When f is equal to r
2 or 3r

2 , which is
not allowed in the problem, the waffle maker is exactly vertical. When
f is greater than r

2 and less than 3r
2 , the blueberries are pointing down.

Problem Author: Howard Cheng 2022 Rocky Mountain Regional Solutions 2 / 22

Profitable Trip

Problem
You are given a weighted, directed graph. You start at vertex 1 and
travel some edges to get to vertex n. When you traverse an edge with
weight t, you gain t dollars. However, you can only keep at most w
more dollars than what you started out with - extra money is thrown
away. What is the maximum profit you can make getting to vertex n?

Solution
Because the weights here are small, you can explicitly maintain the
maximum amount of money you can end with over all vertices, not
just vertex n. The maximum loss you can incur is −2 × 105, so if you
run Bellman-Ford over the graph, the maximum number of times you
can relax a node is 2 × 105 + 101, which will run in time.
Challenge: How do you solve this problem in the weights in the graph
can go up to an absolute value of 109?

Problem Authors: Etienne Vouga 2022 Rocky Mountain Regional Solutions 3 / 22

Champernowne Count

Problem
The nth Champernowne word is obtained by concatenating the first n
positive integers in order. Compute how many of the first n
(1 ≤ n ≤ 105) Champernowne words are divisible by k (1 ≤ k ≤ 109).

Solution
n is large enough that it is not practical to store the integers using
arbitrary precision integers.
However, k is small, so we can maintain each Champernowne word
modulo k .
When transitioning from the nth Champernowne word to the
(n + 1)th, we can multiply by 10s and add (n + 1), where s is the
number of digits in n + 1. This should be maintained modulo k .
Be careful about integer overflow, 64-bit integers suffice.
Challenge: Can you solve this for small k but very large n?

Problem Author: Nick Wu 2022 Rocky Mountain Regional Solutions 4 / 22

Triangle Containment

Problem
You are given a bunch of weighted points (x , y) in the plane. For each
point, its value is defined as the sum of the weights of the other
weighted points strictly inside the triangle defined by it, (0, 0), and
(b, 0). Compute the value of every point.

Initial Observations
n is too large to directly check, for each point, which points are
strictly inside the induced triangle - it is possible to construct O(n2)
pairs where one point is inside the induced triangle by another point.
If we sort the points by their directed angle θi around the origin, note
that in order for point i to have point j inside its triangle, θj < θi .
By similar logic, if we sort the points by their directed angle αi around
(b, 0), we get a similar relation.

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 5 / 22

Triangle Containment

Solution
Sort the point in reverse order by angle around (b, 0).
Looping over all points in this given order, we see that the points
inside the current triangle must precede the current point. However,
those points must also have θ smaller than the current point.
We can maintain a segment tree keyed on index in the θi sort order.
When we see point j , report the sum of all points seen so far with
smaller θ, and then activate that point in the segment tree.
Due to the large numbers, exact integer arithmetic must be used when
sorting points by angle. This can be done by using cross products.

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 6 / 22

Color Tubes

Problem
You have n + 1 tubes each with the capacity to hold three balls.
There are 3n balls distributed among the tubes, three balls each of n
distinct colors. In a single move, you can take a ball from one tube
and move it on top of all the other balls in a tube that has fewer than
three balls in it. In 20n moves or fewer, get all tubes to be either
completely empty or have all three balls of some color.

Solution
There are many different approaches to get this to happen within 20n
moves. We’ll outline one approach that fills in the left n tubes. This
solution will operate in multiple phases.

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 7 / 22

Initialization
We start by emptying the rightmost tube, arbitrarily moving balls from
there into tubes to the left that have space. This takes at most three
moves.
We proceed by making tube 1 be monochromatic, at which point
future moves will not interact with it at all. We need to be able to
perform this in fewer than 20 moves due to the overhead we incurred.

Making the Leftmost Tube Monochromatic
Let the bottom ball in the leftmost tube have color c . We will move
all balls with color c into this tube.
If the tube is already monochromatic, we’re done.
If the topmost ball has color c and the middle one doesn’t, we can
reverse the two balls as follows:

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 8 / 22

Making the Leftmost Tube Monochromatic, continued
Let the leftmost tube be l , the rightmost tube with balls be r , and the
empty tube be e. Move a ball from r to e, the topmost ball with color
c into e, the middle ball from l to r , the topmost ball with color c
from e to l , and the last ball from e back to l . This takes five
operations.
Now, it remains to move balls from other tubes into the leftmost tube.
If such a ball is not the bottom-most ball in its tube, we can remove
the incorrect balls out of tube l into e, any balls above that ball into
e, and then move that ball directly into l . Moving all balls back into
e, this takes at most seven moves to fix one ball.
If such a ball is the bottom-most ball in its tube, we can reverse the
entire tube by moving all balls into tube e, at which point we can
apply the above logic to move balls out of l until we can take the
(now topmost ball) from e and move it into l . This takes at most
eight moves.

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 9 / 22

Food Processor

Problem
You have n different blades. Blade i can cut pieces of size at most mi ,
cutting them in half in hi seconds. Blades reduce the size at an
exponential rate. Compute the minimum number of seconds needed to
convert food that is originally size t to size s.

Solution
For a given piece size, we want to use the blade with the minimal hi
rate. We can ignore blades where mi ≤ s or mi > t.

We need to be able to solve the equation t · 0.5
x
hi = s for x . Taking

logarithms, we can show that x =
hi ·log(t

s)
log 2 .

We need to reevaluate the best blade for all mi values in [s, t]. We
can do this by maintaining the blades sorted by their mi values. It is
too slow to enumerate all eligible blades for each check.

Problem Author: Andy Nguyen 2022 Rocky Mountain Regional Solutions 10 / 22

Greedy Increasing Subsequences

Problem
From a given sequence of integers, construct an increasing
subsequence by taking the first integer from the sequence, and then
taking the leftmost integer in the sequence greater than the most
recently taken integer. Remove all these integers and repeat until the
original sequence is empty. What sequences did you generate?

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 11 / 22

Solution
Instead of generating the sequences in the order requested in the
problem, we compute for each integer in the given input order which
sequence it goes in.
We can naively do this in O(n2) by tracking the last integer in each
sequence and looping over the sequences to find the earliest sequence
where we can append to.
Note that the last integers, when written in order, must be in
nonincreasing order - if they were not, then the offending integer could
have been added to an earlier sequence. We can therefore improve the
performance of this algorithm to O(n log n) by binary searching for the
sequence to add it to instead of doing a linear scan.

Problem Author: Zachary Friggstad 2022 Rocky Mountain Regional Solutions 12 / 22

Branch Manager

Problem
In a rooted tree, people navigate through the tree by always traveling
to the descendant with the lowest ID. n people start at the root and
wish to get to specific destinations, traveling through the tree in order.
Before each person starts traveling, you can permanently delete some
edges from the tree. Compute the index of the first person who
cannot make it home.

Initial Observations
Use the Euler tour technique to represent the tree. Specifically, DFS
through the tree in sorted order of children. Let sv be the time when
we first see vertex v in the DFS, and let ev be the time when we
return from vertex v in the DFS.
We are therefore looking for the first vertex v where there exists a
vertex u appearing before v in the destination order list where ev < su.

Problem Author: Lewin Gan 2022 Rocky Mountain Regional Solutions 13 / 22

Branch Manager

Solution
If we compute the Euler tour of the tree, we can simply loop over the
destination vertices in order, track the maximum sv we have seen, and
see when some ev is less than the maximum ev seen prior.
Note that it is not strictly necessary to compute the Euler tour
beforehand and then loop over the destination vertices in order. We
can perform a preorder traversal of the tree. Prior to returning from
the recursive call from a vertex v , we can visit any vertex that is in the
call stack of the DFS, so we can loop over destination vertices until we
see one we cannot visit.

Problem Author: Lewin Gan 2022 Rocky Mountain Regional Solutions 14 / 22

I Could Have Won

Problem
Alice and Bob are playing rock-paper-scissors - they each earn points
with the first to earning k points winning a game, and points resetting
to zero after. For what values of k does Alice win more games than
Bob?

Solution
Because the number of total points won by both Alice and Bob is at
most 2 · 103, we can brute force all values of k up to the total number
of points earned.
We can directly simulate the result for a fixed value of k by
maintaining the current count of points earned by both individuals as
well as the number of games won by both individuals.

Problem Author: Jaehyun Park 2022 Rocky Mountain Regional Solutions 15 / 22

Sun and Moon

Problem
The sun and the moon align for an eclipse occasionally. It was ds years
ago when the sun was last in the right place, and dm years ago when
the moon was last in the right place. The sun is in the right place
once every ys years, and the moon is in the right place once every ym
years. When will the next eclipse happen?

Solution
We are guaranteed that an eclipse will happen in the next 5000 years.
Therefore, we can check the years starting from one year in the future
and check if the sun and moon will be in the right place - y is a valid
year for an eclipse if (y + dm) is divisible by ym and (y + ds) is
divisible by ys .
There is a faster solution using the Chinese Remainder Theorem, but
this was not required to solve the problem.

Problem Author: Nick Wu 2022 Rocky Mountain Regional Solutions 16 / 22

Everything is a Nail

Problem
You are given a ternary array. You are to construct a ternary array
where all 0’s are contiguous, all 1’s are contiguous, and all 2’s are
contiguous. Maximize the number of indices where your constructed
array matches the given array.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 17 / 22

Solution
There are O(n2) different ternary arrays you can construct, so
checking all of them is too slow.
However, if we construct our ternary array from left to right, the only
information that matters is what integers have been used so far in our
constructed ternary array and what the last added element is.
Therefore, with dynamic programming, we can maintain the maximum
number of integers we can match conditioned on having assigned the
first i integers, the set of ternary integers we have used so far, and
what the ith integer in our ternary array is.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 18 / 22

Family Visits

Problem
Given n ≤ 1 000 days, the amount of mess is increased by mi each
morning, and you can clean ci amount of mess in the afternoon,
determine the minimum number of afternoons you have to spend
cleaning so that on d queried nights the mess is zero.
Divide the days into segments in which the family visits on the last day.
Each segment is then an independent subproblem of the same type. In
each segment, the mess should be zero by the end of the last day.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 19 / 22

Family Visits

Solution 1: Greedy
On the last afternoon, if the mess is greater than zero, then you must
clean on the last day; if the mess is already zero by then, you don’t
have to clean on the last day and can save an option of cleaning on
the last day to remove mess created on previous days.
Now consider a previous afternoon when the mess is greater than zero,
you will have an option to clean on that day, along with all the
cleaning options that you saved for the following days. Among those
options, you should pick the cleaning with the largest ci , until the
mess becomes zero.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 20 / 22

Family Visits

Solution 1: Greedy
This yields a greedy solution working backwards: Initialize an empty
cleaning option set S and total mess t = 0. For each day in reverse,
add mi to t and ci to S . If t > 0, pick the largest values from S to
reduce t to zero. The number of values picked corresponds to the
number of afternoons spent cleaning.
If we maintain S using a BBST or a heap, this greedy algorithm runs
in O(n log n). The low constraints of the problem also allows you find
the max value from S in linear time, so that O(n2) also passes.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 21 / 22

Family Visits

Solution 2: DP
Let f (i , k) be the max amount of mess we can have starting on day i ,
such that we can clean k times in the following days and have no mess
by the end of the last day. Assume the last day is day n.
f (i , k) < 0 means it’s impossible to clean all mess by day n. In terms
of arithmetics we treat any negative value as negative infinity.
We have:

f (i , k) = max

f (i + 1, k)−mi if i < n

(don’t clean on day i)
f (i + 1, k − 1) + ci −mi if i < n, k > 0

(clean on day i)
ci −mi if i = n and k > 0
−mi if i = n and k = 0

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 22 / 22

Family Visits

Solution 2: DP
Find the smallest k as our final answer such that f (1, k) ≥ 0. This
can be done by iterating k incrementally.
There are O(n2) DP states in total and the transition takes constant
time. Therefore the DP solution runs in O(n2) time and space.

Problem Author: Travis Meade 2022 Rocky Mountain Regional Solutions 23 / 22

